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A.BSTRACT

Different definitions of non-causality (according to Granger, Sims,

Haugh and Pierce,...) are analyzed in terms of orthogonality in the

Hilbert space of square integrable variables. Conditions, when necessary,

are given for their respective equivalence. Some problems of testability

are mentioned. Finally non-causality is also analyzed in terms of

"rational expectations", extending previous results of Sims.

Key words: Stochastic processes; non-causality; projections in Hilbert

spaces; innovations and rational expectations.
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A LINEAR THEORY FOR NOR-CAUSALITY

J. P. Florens and M. Mouchart

1.1. Introduction.

Following Granger's (1969) and Sims' (1972) papers, the non-causality

concept has taken on great Importance In econometrics literature. This

concept is essentially the same as the concept of transitivity introduced

into statistics by Bahadur (1954) and used in sequential analysis (see

e.g. Hall, Wijaman and Gosh (1965)). Intuitively, transitivity can be

presented in the following way: a sub-process (zn of a multivariate

stochastic process (x) is transitive if the past and current valuesn n

of z n  are sufficient to forecast zn+l. Equivalently, if xn is

partitioned into (zn yn), we say that the process generating yn does

not cause the process generating zn"

A precise statement of this intuitive definition can be made in

different ways. In some of our previous work, non-causality is couched

in terms of sequences of Independence conditions between c-fields (see

FlorensMouchart, 1980a,b and Florens, Mouchart, Rolin, 1980). In this

paper we propose definitions in terms of sequences of orthogonality

conditions between linear subspaces of the Hlbert space of random variables.

This kind of presentation is Implicit in most of econometrics papers and was

explicitly used by Hosoya (1977). (In economics or econometrics literature,

see also e.g. Gourieroux, Montfort (1960) or Futia (1981) in which the same

kind of mathematical tools are used. In time series literature this kind

of presentation is very common. See e.g. Anderson (1971)).



The main purpose of this paper is to show the equivalence of several

definitions of non-causality (Granger (1969), Sims (1972, 1980), Haugh

and Pierce (1977)). These authors have often simultaneously given a

definition of and a test procedure for non-causality. We essentially

analyze here the relations between these definitions. Comparison of the

properties of test procedures is clearly another story. For example,

we shall never use stationarity assumptions in the definitions of non-

causality or in the proofs of their equivalence. However stationarity

is a crucial assumption in test procedures.

An important point about non-causality is its relationship with the

exogeneity concept used in econometrics literature or, more generally,

with the theory of sufficiency and ancillarity in sequential models.

This relationship was the main topic of our previous papers (Florens,

Mouchart 1980a, Florens, Mouchart, Rolin 1980) in any of which a bibliog-

raphy can be found. In particular, the relationship with exogeneity is

studied in Florens, Mouchart (1980c) and in a paper by Engle, Hendry,

Richard (1980). So this point will not be treated here.

This paper is organized in the following way. Notation is presented

in the second part of the introduction. Section 2 is devoted to the original

definition of Granger and to the main properties of this concept. Sims'

first definition, Haugh, Pierce's definition and their respective equi-

valences to Granger's definition are given in Sections 3 and 4. In Section

5 links between non-causality and rational expectations are pointed out

and Sims' second definition is presented and shown to be equivalent to

Granger's. Definitions, notation and results on orthogonality in a Hilbert

space are recalled in the appendix.
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1.2. Notations.

Let (QGP) be a probability space and L2 be the Hilbert space

of square Integrable random variables (defined P - ajost surely).

In this paper inner product, orthoginality, projection, completion...

are relative to the canonical structure of L2  (see any book on probability

theory e.g. Neveu (1964)). For simplicity we restrict our presentation

to a bivariate discrete stochastic petess (x (Yn' Zn) n-0,l... i.e.

to a double sequence of random variables (yn) n and (zn) n . All random

variables considered are assumed to be elements of L . (Note that random

variables are defined only almost surely, so we in fact consider a class

of stochastic processes such that each is a modification of others).

It must be pointed out that the time index belongs in N " {O,,...)

and not in l - {...,-1,0,1,...}. (Continuous time is another story!)

This hypothesis does not limit our results and has the advantage of

making clear the scale of initial conditions. In fact N must be

completed with a maximum element m. If I is the time index, it must

be completed by a minimum element _o and a maximum element ft. So "4 if

the index time is 1, and 0 if the index time is N , play the same

role, (in Florens-Nouchart (1980 b) details can be found about this modi-

fication of the time index).

Let (y) 0 1  be a stochastic process. We denote by y (n _< m)

2 n
the linear subspace of L generated by yn...y. (For example, yn

is the subspace generated by Y). If a is finite such finite-dimen-

sional subspaces are closed. Y denotes the closed subspace generated
YU

by Yn' Yn+l,... y represents the history (in the sense of all linear

functions of the past) of yn+l . Similar notation is used for (zn) n .

3



2. Granger' s Non-Causality

For expository purposes, we first recall Granger's (1969) concept

of non-causality along with some of its main properties.

Definition 2.1. y does not linearly cause z iff

(2.1) V n > 0: zn+1 j. YO I z0+u D

In this definition, u may represent initial conditions and any other

relevant nformation to be used by means of linear functions. Typically

u will include, at least, the constant functions, and also any informa-

tion available at the start of the process. Information that becomes

available later will be introduced in section 5. u is a closed linear

2
subspace'of L

For instance, when u contains the constant functions only, u

may be dropped in definition 1 if either of the processes y or z have

zero-mean. From the definition of conditional orthogonality (see Theorem

A.l in the appendix), condition (2.1) allows several readings. The

n n
projection of zn+l onto the linear space y 0 + z0 + u is contained in

n
the linear space z + u. Alternatively, the residual of the projection

n
of zU+1 onto the linear space z 0 + u is orthogonal to the linear

n
space Y0.

By theorems A.4 and A.8, (2.1) is equivalent to any one of the following

f properties:

n+l U n

(2.2) V n> 0: z 0  JYo I ZO + u

4
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(2.3) V (np). 0 < p <n: xn+ 1 _ Y zn + u

(2.4) V (np), 0 < p < n: z0  J. y p z + u

If (2.1) - or (2.2) or (2.3) or (2.4) - is not satisfied, we shall

say that "y linearly causes z". Linear causality and non-causality enjoy

several interesting properties.

Property 2.2. For any process z, z does not 1inearly cause z.

Indeed, by theorem Al,

(2.5) Vu V n >0 : z x n + u

Property 2.3. Linear causlitlt not transitive.

In other words, y linearly causes z and z linearly causes

v do not together imply y linearly causes v. (Note that "transi-

tivity" is used here in the usual algebraic sense).

We shall call "y and z" the set of processes (Cay n + Bzn) for

any a and B in 3. This set may also be viewed as the linear space

generated by yn and z. The history of "y and z" up to the Instant

is defined as y + z. In other words, "y and z" represents the

set of information obtainable linearly from the observations Y. and
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Property 2.4. y and z does not linearly cause w if and only

if neither y nor z linearly causes w.

In other words, and this is a direct implication of theorem A.3,

one has

(2.6) V n 0: wn+I n+ z n

if and only if

wn+i YO V0 
+ U V n > 0

and

+ i no In + u V n >0

Property 2.5. y does not linearly cause z and w does not

imply that y does not linearly cause z (or that y does not linearly

cause v).

It is therefore possible that y linearly causes z, y linearly

causes v but that y does not linearly cause z and w. In other

words:

(2.7) V n >_ 0 , V Ra B e 2 :

(azn + Own+l) i Y Iz + n + u

does not imply:

n+l yo I 'o + u

6



Property 2.6. y linearly causes z and w does not Imply that

either y linearly causes z or that y linearly causes v.

It is therefore possible that y linearly causes z and w and

that neither y linearly causes z nor y linearly causes v.

Definition 2.1 has suggested testing for non-causality by testing

the following property:

(2.8) Z n zqn  + u n > max(p,q)(2.8) n+1 J Yn-p n -q_

for some fixed value of p and q. In general (2.1) does not imply and

is not implied by (2.8). Therefore such a test may be justified only by

maintaining some supplementary hypotheses. These may be obtained by

means of the following theorem.

Theorem 2.7. Property (2.8) is true for any p under the following

conditions:

n I zo + U
(2.1) ztn+l i YO 0

(2.9) z~ 1 z~ +l ynzn +O0 n-q

(2.10) 0y + z + u+ nno + U) z n-_ + .

Proof. (2.1) and (2.9) imply that:
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(2.11) (Yn +zo+U) z r (z0n +u) n (ya+n + U)

and, by (2.10), the l.h.s. of (2.11) belongs to (Zn +U). i.e.:n-q

(2.12) (yo+Zo+U) Zn+l £ (Zq +U)

i.e.

n-q

Clearly (2.13) implies (2.8) for any p. 3

The role of theorem 2.7 may be viewed as follows. Condition (2.10)

meaus that any linear function of (yizj~u: 0 < i < n, n-q < j < n)

that is a.s. equal to a linear function of (zi,u: 0 < i < n) is a.s. a

function of (z<,u: n-q C i < n) only. This condition implies, but is

n
not equivalent, to the following property: the only linear functions on YO

Sean z-q+lIa.s. equal to linear fuitions on 20 are a.s. equal to linear functions

on (zn_ +u). Condition (2.10) may be viewed as a linear form of "measureablen-q
separability" as defined in Mouchart and Rolin (1979) and may be termed

"linear separability". The purpose of this condition is to avoid patho-

logies that could link the y-process and the z-process.

For Gaussian processes, condition (2.9) may be viewed as a Markovian

condition of order q for the conditional process generating (zn+, yo+u)

For general processes, condition (2.9) may ba viewed as "linear" arkovian

condition on the residual of the projection of zn+l on (y0 +U).
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Theorem 2.7 suggests testing for non-causality under the maintained

hypotheses (2.9) and (2.10) by testing (2.8) for some fixed (p,q).

This test is generally performed by testing the significance of the

coefficients of ynS.'"Yn-p in the regression of Zn+l on y..""Yn-p'

Zn,...,Zn~qU (u is in this case the constant term). Note that neither

(2.9) nor (2.10) involve an assunption of stationarity but stationarity

implies that (2.9) may be approximately satisfied for large values of q

(see, e.g., Rozanov (1967)). For autoregressive processes (of order

smaller than or equal to q) condition (2.9) will be exactly satisfied,

whether the process is stationary or not.

9
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3. Sims' Non-Causality.

Sims (1972) obtained the following result.

Theorem 3.1. y does not linearly cause z if and only if

(3.1) V n> 0 IY J. z o+ u

Proof. A general proof of this result was given by Hosoya (1977)

but we have found the following proof both simple and insightful.

From (2.2), (2.1) is equivalent to:

n+l n n

(3.2) V n >0 Z 0 Y0 I z 0 + u

This implies (3.1) because, by Theorem A.10, (3.2) is equivalent to:

(3.3) Vn> 0 zo co i z + u

Reciprocally by Theorem A3, (3.1) implies:

(3.4) V n > 0 , V p > 0 zGo y I z'P + u

and this implies (3.2) by theorem A.8 and because yO is generated by

(y : 0 < p < n). C

The easiest interpretation of 3.1 may be the following: the projection

of yn onto z0 + u (i.e. the best linear approximation of yn by an

element of z + u) belongs in zo+u. In other words, only the past nd

Sthe current values of z n  are relevant to explain y n"

, 10



Theorem 3.1 depends crucially on linearity: In terms of Independence

In probability, this result would be false (See e.g. Florens and Mouchart,

1980.b).

An Imediate Implication of theorem A.11 is the following result.

Theorem 3.2. The following properties are equivalent:

(.3.5) VYn> 0 z 0Iy z 0+ y 0 + u

(3.6) V n >0 z ziy +I? 0+u
0_ Y 0 + 0 +u

Therefore, (3.5) is an alternative form of linear non-causality if the

initial condition yo is a linear function of u. In the non-linear

theory, the condition analogous to (3.5) has been introduced as a

modified Sims' condition so as to obtain a condition equivalent to

Granger's (see e.g., Chamberlain (1980) and Florens and Mouchart (1980

a, b and c).

Note that the properties (3.1), (3.5) and (3.6) are not modified if

z0is replaced by z (theorem A.2).

For practical applications or for hypothesis testing Sims' definition

(3.1) can be replaced by:

(3.7) V n >q z~I~ Zn+P i * nq+u

for fixed values of p and q. In general (3.1) and (3.7) are not



equivalent and further hypotheses are required to guarantee an implication

between these two definitions. A theorem analogous to theorem 2.7 could be

given without difficulty.

An interesting problem is the relationship between Granger's and

Sims' definitions when the dimensions of the future and past of the

processes (2.8 and 3.7) are fixed. It should be noted that, in general,

there is no relationship between these definitions.

The following theorem shows the equivalence between (2.8) and (3.7)

under a condition on the marginal process generating (zn)

Theorem 3.3. Under the following hypothesis:

n n

(3.8) Vn > P-q zn+l Izn.(p:q ) I Z n-q + u

The following two conditions are equivalent.

(3.9) V n > max(p,q) Zn+l I n zn + u

(3.10) V n > mx(p,q) z n+l JYu
-- q

Proof. a) (3.9) - (3.10) follows from the following property,

which will be proved by induction.

(3.11) V n >max(pq) Vi - l,...,p+l z,+,J ny nq + u

12



(3.9) Implies (3.11) with j - 1. Let us asinine (3.11) is true for

any j I p. (3.9) gives us:

(3.12) z .IJ 1 1 n+j Iz:-J + u
yA.jp y+jnq

As Yn y+j _p (3.12) Implies:

nn~lynI p+
(3.13) z + u

(3.8) Implies

(3.14)Tk~ nj+.LzJ-q-1 n4 J + u
ln-q n+J-q

and by theorem A.3, (3.13) and (3.14) imply

(3.15) znlj+1 . Yn I zn+q + u
n-q

or equivalently

(3.16) z+j+l L Yn I zj+j + +u

and by thoerem A.3, (3.11) and (3.16) give:

n+j+l j n
2n+1 J.Yn i n-q + u

13



b) (3.10) -0 (3.9) follows from the following property, also

verified by induction:

(3.17) V n > max(p,q) V i - 0,...,p zn+1  Y'- I zn +u.
n-i n-q

(3.17) is true for i - 0 by (3.10). Let us assume (3.17) is satisfied

for any i < p-1. From (3.10) we get:

n-i+1 n-i-I
(3.18) Z n-i Yn-il I z n-i-l-q + u.

n c;n-i+p
As zn-i C z -i + , we get from (3.18) (by corollary A.4):

(3.19) z :-jp i Yn-i-l I zi-1 + u

(3.20) -> n+l I Yn_--l I Z'ni-l-q

By theorem A.3, (3.8) and (3.20) imply:

(3.21) z yn+l i Yn-- 1  
z n + u
n-q

And also by theorem A.3, (3.17) and (3.21) imply:

(3.22) z~~j 1 n n-
(3.22) n+l J- Yn-:L-1 zn-q + u•

(3.17) is then verified and the proof Is completed. [

14



The marginal process generating (zn)n> 0 is (linearly) autoregreasive

if

(3.23) vn >q " +l i zo I z_ + U
0 n-q

(3.8) implied by (3.23) but (3.8) is weaker than (3.23). Note that

theorem 3.3 cannot be stated in terms of conditional independence instead

of conditional orthogonality because the proof depends crucially on (see

parts (i)(b) and (ii)(b) of theorem A.3) the fact that, with the same

notation as in the appendix, E1 _ E2  E3  and E1 J E4 I E3

E1 J (E2 +E4 )1 E3 . This property has no equivalent in terms of condi-

tional independence (see Florens and Mouchart (1980.b)).

15
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4. hugh and Pierce's Non-Causality.

Haugh and Pierce (1977) have suggested analysing the cross-correlations

between the innovations of the z-process and the innovations of the

y-process. In this section we compare the approach of Haugh and Pierce

and linear non-causality.

In our notation, the innovations of a process (Ynn > 0 form the

n-i n-il I
process denoted yn-y 0 Yn - (yo ) yn i.e. the difference between Yn

and its projection on the linear space of all the linear combinations of

, or, alternatively, the projection of yn on the orthogonal

complement of this space of linear combinations. So the property stated

in the following theorem can be viewed as the Haugh and Pierce definition

of non-causality, rewritten in our notation.

Theorem 4.1. If y does not linearly cause z, then

Vn>0

(4.1) Vpn (z 1  n +u) J (yplI yP)

Vp n

Proof. Clearly (yp)0 yp+l C yo if p < n. Therefore, condition

(2.1) Implies:

(4.2) V n > 0 , V p < n a,+, i (yP) Iyp+l I "0 + u

Theorem 4.2. If yo 0 e + u, then (4.1) Implies that y does

not linearly cause z.

16



Proof. We first rewrite (4.1) as follows:

Vn>0 .
(4.3) (z 0 + u) Zn+1 z Yp. 1 I

By theorem A.9, (4.3) is equivalent to:

V n > 0n u)O0(z + Zn +1 i Y OI Yg

Vp< n

i.e.

Vn>0

(4.5) (z+ Z0 + U) (Y y 0

Vp<n 0 u + 1  0

and, by theorem A.8, (4.5) is equivalent to

(4.6) V n > 0 (zn+ I z + u) i (y I YO)
n 0 0

and (4.6) is equivalent to (2.1), by theorem A.6, if y0 6 z0 + u.

These theorems show that the equivalence between Haugh and Pierce's

condition (4.1) and linear non-causality basically depends on the

specification of the initial condition y0 * If u has the form

u . Y0 + v, then the two approaches are equivalent; otherwise linear

non-causality Implies, but is not implied, by condition (4.1).

17
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5. Rational Expectations and Non-Causality.

Non-causality may be viewed as the condition that the prediction of
n

Z+ based only on its own history z0 will not improve if it is also

based on the past history of y. This suggests that "y does not cause

z" may be rephrased as "z is self-predictive .r.t. y"(for more justifica-

tion see e.g. Florens and Mouchart (1980c)).

Consider nov a sequence of messages and, associated with it, a sequence

of "information sets" In representir the information contained in all

the messages up to instant n, Then one may decompose zn  (or y.) into

an 'expected" component giver - arv aa "unexpected" one. An interesting

question is to analyze non-cat.iJty in terms of such a decomposition for

both y 'nd z. This was the object of a recent paper by Sims (1980).

In a linear context-, tka sequence In will be an increasing sequence

of closed subspaces of L2; often I will have the form w0 where {wn 0 n
A

is a sequence of "observations". The "expected" component Zn of zn

becomes the projection of z n on In, and its "unexpected" component n

becomes the projection of zn on the orthogonal complement of I n  In

other words, we have the following decomposition:

A zZ+ n n Xn(5.1) zn - n + Cn
1 n an

Similarly for yn:

18



(5.2) yYn In Yn(52)Yn Yn + Tn I

Tn = In Yn

Remark. It should be pointed out that a closed subspace is a poor

mathematical translation of the intuitive concept of information. Indeed,

"knowing" wn  should involve knowing all (measurable) transformations of

wn, and not only the linear ones. In other words, the 0-field is the

natural translation for the concept of information. In the present

context, representing expectations by projection on a space of linear

functions (defined on wO ) only may be justified on the grounds of

computational simplicity or by a Gaussian assumption. Finally, the

natural way to deal with an increasing sequence of a-fields is to intro-

duce a filtration and to consider as the rational expectation of a given

process the nearest process adapted to that filtration (see, e.g.

Dellacherie-Mayer, (1976), see also Futia (1981)).

In Sims (1980), the information sets In  are taken to be:

n-1 n-l(5.3) In = z0  +yO +u n > .

Therefore:

n-l n-l(5.4) Cn = (:0 +YO +U) zn n>

n-l n-l
(5.5) Tn- (z - + Y + u) Yn n >1.

It is also assmed that the initial conditions z0 and y0 are totally

unexpected i.e.

19



(5.6) C0" z0 and n0" YO

With the above notation, we have the following results.

Theorem 5.1. If y does not linearly cause z, then:

(5.7) V n >_0 z 1 j o + u

Proof. Step 1. We first prove:

n-I
(5.8) V n > 1 =(z 0  +U) z

We note that condition (2.1) my be written as:

n-I. n-in-i

(5.9) V n > 1 (y - + z o - + u) z (z o  + u) z n

This is equivalent to (5.8).

Step 2. We now prove:

in n
(5.10) Cn + u - z0 + u n> O.

Given (5.6), this is trivial for n - 0. Suppose (5.10) is true for

some n. Then from (5.8), we have

n

n+l -n+- (z0  n+I

which clearly belongs to z + u.

20
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Therefore, under (5.10) for some n, £0+ + u C z +l + u. Conversely,

from (5.9) again, Zn+ = £n-. + (zo+U) Zn+l which, under (5.10) for some
n+ Un+01~

n, belongs to n+1u; therefore under (5.10) for some n, + + u

z0  +u
0

Step 3. We now prove:

n1 n n1

(5.11) n C Ya + zo + u V n > 0

indeed,

Tip y (y -1 +z 1 +u) y n + zO +u V p <n.
p p 0 0 p YO

The proof Is concluded by noticing that (2.1) may be vritten as:

(5.12) zU L(n + n +UI n +
o ~u0 0 u 0

Theorem 5.2. If y0  u, then condition (5.7) implies that y

does not linearly cause z.

Proof. Step 1. We first prove that the assumptions imply:

(5.13) Vn > 0 zn+ _ yo I n + u

indeed, (5.7) is equivalent to:

21



0 n~ "(%+ u) z+1 j To Va 0 _

i

(,n + u) z"+ 1 + y 1p +z u) y V (p,n) 0 < p:S n

, + u) z- 1  Y ' p-l +z 1+u v (p,n) 0 < p < n

0 (€+u n+ ( +0 yp_0

, + U) zi y I yO+z0+u (theorem A.9)

V (p,n) 0 < p < n

O(Eo + u).J 0 +
o* + n+I- Yp I 0 + u (because y 0 E u)

V (pn) 0 < p:< n

=Zn 1 . y c + u V (pn) 0 < p < n.

The last step is made by using the fact that z 0 + u c c 0 + u

and by applying theorem A.6.

Step 2. We now prove (2.1) by induction. It is clearly true for

n - 0 under the hypothesis y0 a u. Now suppose (2.1) is true for

n < p; we prove that (2.1) is also true for n - p+l. From step 1 in

theorem 5.1, (5.8) is true for n < p and, from step 2, (5.10) is also

true for n < p; in particular ep + u zp +
u; therefore, by (5.14),

(2.1) is true for n - p+l. D3
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Theorem 5.1 shows that condition (5.7) is, in general, stronger than

non-causality but theorems 5.2 shows that condition (5.7) is actually equi-

valent to non-causality if the initial condition on y is included in u

(which Implies that both expectations zn and yn may involve yo.)

Extensions of non-causality properties can be easily done in terms of

expected or unexpected components of the variables. As an example we give

the following version of theorem 3.1.

Theorem 5.3. If yo a u, y does not linearly cause z if and

only if

00 n. n
(5.14) Vn > 0 z+1 1 0 I £o + U

Proof. Using theorems 5.1 and 5.2 we just have to prove the equi-

valence of (5.14) and (5.7).

(5.14) Implies (5.7) by theorem A.2 (since zn+1 6 Zn+l). (5.7)

implies (5.14) by using theorem A.10 (note that if y does not linearly
n n

cause z, we have V n z0 + u - Cn + u - see step 2 of the proof of
0 0

theorem 5.1). 13

Finally let us note that the property "y does not cause z" implies

the following conditional orthogonality:

(5.15) V n > 0 V k > 0 znk+l +I n+k n + u

(by theorem 5.1 and corollary A.4). This property is actually the

property tested by Sims in his 1980 paper.
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Appendix. Orthogonality.

Let X - (L, <-,*>) be a Hilbert space on NR, i.e. L is a linear

space of vectors x ' s and <',O> is an inner product (bilinear, symmetric

and positive definite) which makes L complete. Details on this structure

can be found in e.g. Halmos (1957) or Greub (1975). The Hilbert space we

use in the main body of this paper is the set of (classes of) random

variables y defined (up to an almost sure equality) on a probability

space (U,GP) and such that E(y 2 ) is finite. The inner product between

y and z is then defined by E(yz). However, definitions and results

given in this appendix are stated in terms of a general Hilbert space.

Let Ei be complete (or, equivalently, closed) linear subspaces

of L; where in particular E0  is the subspace containing the null vector

only. Ei + E denotes the usual sum of subspaces, x1  x 2 denotes

the usual orthogonality w.r.t. <*,.> (i.e. <x ,x 2 > - 0). Likewise

x J E means x Je V e6 E and E1 J E2 means el J e2 Y e l sE 1 ,
~1

e2 C E2. E denotes the orthogonal complement of E, i.e.

± I
E - (xgLlx J El. Note that E0 - L. Finally, Ex denotes the or,hogonal

projection of the vector x on the subspace E, i.e. the unique vector

aE such that (x-e) I E. Note that this is a linear Idempotent

operation. We shall make use of the following property:

<xVEX2> - <ExlX2 > - <ExlEX2 > V XlX2 a L and VE

Note that Lx - x and Eox - 0. This notation is extended as follows:

E2 E1 means the projection of E1 on E2 . Note that E0E1 - E0 and

LE1 - El. We shall also use:
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E C E 2 1E11E1E E.

We shall Introduce in this appendix the two concepts of conditional

orthogonality and biconditional orthogonality. They are not new concepts,

as they are merely particular cases of orthogonality, but they provide

convenient notation and results for our kind of problems.

A.l. Theorem.

The following properties are equivalent and define "El1 andE2

are orthogonal conditionally on E3" which is denoted as "E1E 2 1 E39

(i) (x Ix 2 ) £g E x 2' (xl -E 3 xl) j Nx2 -E 3x 2 )

(or E3 1113 E2 or E3 ElJE2  or E1  3  2

(11.) x a El -1(E2+ 3  xl

(or (E2 + E 3 ) E1 . E 3 E1)

(ii) x 3 3 E2 '*(El+ E3) x 2 m Ex2

(or (E 1+ 13) E2 a 1 3 2) E 0

From (i), conditional orthogonality ay be Interpreted as the usual

orthogonality between the projections of E11 and E2on 13 .In a

statistical context, these projections will be recognized as the residuals

in regression analysis.
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A.2. Elementary properties.

l) 1 E 2 I E0 l i  E2

(ii) E4 CE 1 and E 1 1 E2  E3  Imply E4 -E2  E 3

(iii) E4 CE 3  Implies El E4 1 E3  V E1

(iv) E4 CE 3 and E1 J E2  1 E3 imply (El+E 4) Ed E2 E 3

A.3. Fundamental property of conditional orthogorality.

The following properties are equivalent:

(M) (a) E1 1 E2 I E3 and (b) E1 J E4 I E3

(ii) (a) El JE 2 I E3 and (b) El JE 4 I E2 +E 3

(iii) E1 J. (E2 +E4) I E3

Proof. (iii) -* (i) by A.2 Iii. To prove that (i) -* (iii) take

xa E2 + E4, i.e. x - x2+x4. Then, by the linearlity of projection

(i) Implies that (EI+E 3) x - E3x. Similarly, (iii) 4 (ii a) by A.2

iii and (iii) me (ii b) because, by (11), (1 2 +E 3 +E 4 ) xl - 13x 1 x 11 I

which implies (E2 + Z3) x, = E3xI as a property of projections. Finally

(ii) "'(iii) because for any xI 1 El, (E2 +E3 +E4 ) x. " (E2+E3)11 = 13z1

by (ii b) and (ii a) successively. o
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A.4. Corollary.

E4 C El +E3  and E3  Imply El1 121 14+33. 

A.5. Theorem.

The folloving properties are equivalent and define "E conditionally

on E2 and E3  conditionally on E4 are orthogonal" vhich is denoted by

"(E_ I E2) L (E~ it):

(i) V (xlX3) 4 E1 x E3 = (x 1 -E 2 x1 ) J (x 3 -E 4 x3 )

-L -
(ii) E2 E 1E 4 3

4.

(iv) E2 El JE3 1E 4"

A. 6. Elementary properties.

(i) E I IE 2 I EZ3 4 (El I E3) ' (E2 1 E3 )

in particular: E 1 E2 a (El I E0) 0 (E2 I E0)

(ii) El J E2 I E3 0 (E1 l EO)J (2 I 3)

E1 J (E2 1 13)

(1i1) E5 CE1 and (E, I E2  (E3 1 14) Imply (15 Z2). (3 114)

(iv) E4 E
2  and (Ell E2) ("3 1"4)* Ell- 3 I 2.
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A.7. Fundamental property of biconditional orthogonality.

The following properties are equivalent:

(i) (a) (El I E2) J- (E3  Ed and (b) (El I E2) I (E5 1 Ed

(ii) (a) (El I E2 ) - (E3 I E ) and (b) (E1  E2 ) I (KsIE 3 +E4 )

(iii) (E1 1 E2) [(E3 + E5) I E4]

Proof. From theorem A.5 (iv) one may replace (Eli E2 ) by

E2 E1 and then use A.3. C3

A.8. Theorem.

Let A be a subset of L and E be the closed linear subspace

of L generated by A. Then for any closed linear subspaces EV,E2 E3

the following two properties are equivalent:

() A E1  E2  E 3

(ii) EI E1 IE 2  E K3

Sequences of conditional orthogonalities.

A.9. Theorem.

Lot (Fn)n > 0 be an increasing sequence (Fnl C Fn) of closed

linear subspaces of L. Then, for any E and G, the following pro-

portion are equivalent:
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() Vn> 0 EJF I F _1 + G

(ii) Vn>0 EIF, I 0 +G "

Proof. (ii) implies (i) by A.4. The converse follows from the

property: V n > 0, V q - O,...,n E l Fn I Fn-q+G  which is proved

by induction. It is clearly true for q - 1. Let us assume this property

for general q and note that (i) implies E LF +h. e
n' -q1 ql

result follows from application of A.3 and A.4. 3

A.10. Theorem.

Let (En)n > 0 and (Fn) n > 0 be increasing sequences of closed

linear subspaces of L such that V n Fn C En . E, is the closed sub-

space generated by U E n Then the following properties are equivalent:

n>0n

(i) vn> 0 En+1 LF n I En+G

(i) Vn>0 E. JFn I E + G

proof. (ii) Implies (i) by A.2. The converse follows by using

A.6 and the property:

Vn>0 V p>l npJ 1 n I En +G

* This property is proved by Induction. It is true for p - 1. Let us

assume this property is true for general p. (i) Implies

" n+p+1 F I E n+p +G and A.3 and A.4 Implies the result. 13
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A.11. Theorem.

With the same definitions as in the preceding theorem the following

two properties are equivalent:

(i) E1  n FIn E +F +G

(ii) V n>O E.JiF I E + F0 + C.

The proof is essentially the same as the proof of theorem A.6.
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